Review of Graph

>Sets and disjoint sets,
$>$ union,
$>$ sorting and searching algorithms and their analysis in terms of space and time complexity.

Introduction to Graph

- A graph, G, consists of two sets, V and E.
- V is a finite, nonempty set of vertices.
- E is set of pairs of vertices called edges.
- The vertices of a graph G can be represented as $V(G)$.
- Likewise, the edges of a graph, G, can be represented as $E(G)$.
- Graphs can be either undirected graphs or directed graphs.

Three Sample Graphs

$V\left(G_{1}\right)=\{0,1,2,3\}$
$E\left(G_{1}\right)=\{(0,1),(0,2),(0,3)$,
(1, 2), (1, 3), (2, 3)\}

$V\left(G_{2}\right)=\{0,1,2,3,4,5,6\}$
$E\left(G_{2}\right)=\{(0,1),(0,2),(1,3)$,
(1, 4), (2, 5), (2, 6)\}

$V\left(G_{3}\right)=\{0,1,2\}$
$E\left(G_{3}\right)=\{\langle 0,1\rangle,\langle 1,0\rangle,<1$, 2)\}
(a) G_{1}
(b) G_{2}
(c) G_{3}

Subgraph and Path

- Subgraph: A subgraph of G is a graph G^{\prime} such that $V\left(G^{\prime}\right) \subseteq V(G)$ and $E\left(G^{\prime}\right) \subseteq E(G)$.
- Path: A path from vertex u to vertex v in graph G is a sequence of vertices $u, i_{1}, i_{2}, \ldots, i_{k}, v$, such that $\left(u, i_{1}\right),\left(i_{1}, i_{2}\right), \ldots,\left(i_{k}, v\right)$ are edges in $E(G)$.
- The length of a path is the number of edges on it.
- A simple path is a path in which all vertices except possibly the first and last are distinct.
- A path $(0,1),(1,3),(3,2)$ can be written as 0,1 , 3, 2.
- Cycle: A cycle is a simple path in which the first and last vertices are the same.

G_{1} and G_{3} Subgraphs

Connected Graph

- Two vertices u and v are connected in an graph iff there is a path from u to v (and v to u).
- A tree is a connected acyclic graph.

Strongly Connected Graph

- A directed graph G is strongly connected iff for every pair of distinct vertices u and v in $V(G)$, there is directed path from u to v and also from v to u.
- A strongly connected component is a maximal subgraph that is strongly connected.

Graphs with Two Connected Components

G_{4}

Strongly Connected Components of G_{3}

(2)

Degree of A Vertex

- Degree of a vertex: The degree of a vertex is the number of edges incident to that vertex.
- If G is a directed graph, then we define
- in-degree of a vertex: is the number of edges for which vertex is the head.
- out-degree of a vertex: is the number of edges for which the vertex is the tail.
- For a graph G with n vertices and e edges, if d_{i} is the degree of a vertex i in G, then the number of edges of G is

$$
e=\left(\sum_{i=0}^{n-1} d_{i}\right) / 2
$$

Adjacent Matrix

- Let $G(V, E)$ be a graph with n vertices, $n \geq 1$. The adjacency matrix of G is a twodimensional $n \times n$ array, A.
- $A[i][j]=1$ iff the edge (i, j) is in $E(G)$.
- The adjacency matrix for a undirected graph is symmetric, it may not be the case for a directed graph.

Adjacency Matrices

 j$V_{i} \rightarrow V_{j}$ then $A[i, j]=1$

0
0
0
1
0 $1_{0} \quad 1 \quad 0$
$\begin{array}{ll}\text { (a) } G_{1} & \text { (b) } G_{3}\end{array}$
$\begin{array}{ll}\text { (a) } G_{1} & \text { (b) } G_{3}\end{array}$
$\left.\begin{array}{lllll} \\ 0 & 0 & 1 & 2 & 3 \\ 0 \\ 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 & 1 \\ 3 & 1 & 1 & 1 & 0\end{array}\right]$
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
0
1 $\left[\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\left.\mathbf{i}^{2} \begin{array}{c}
2 \\
3
\end{array} \left\lvert\, \begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0
\end{array}\right.\right) \rightarrow \text { Out- }
$$

In-degree

Adjacency Lists

- Instead of using a matrix to represent the adjacency of a graph, we can use n linked lists to represent the n rows of the adjacency matrix.
- Each node in the linked list contains two fields: data and link.
- data: contain the indices of vertices adjacent to a vertex i.
- Each list has a head node.
- For an undirected graph with n vertices and e edges, we need n head nodes and $2 e$ list nodes.

Adjacent Lists

(a) G_{1}

HeadNodes

(b) G_{3}

Adjacent Lists (Cont.)

HeadNodes

(c) G_{4}

Graph Operations

- A general operation on a graph G is to visit all vertices in G that are reachable from a vertex v.
- Depth-first search
- Breath-first search

Depth-First Search

- Starting from vertex, an unvisited vertex w adjacent to v is selected and a depth-first search from w is initiated.
- When the search operation has reached a vertex u such that all its adjacent vertices have been visited, we back up to the last vertex visited that has an unvisited vertex w adjacent to it and initiate a depth-first search from w again.
- The above process repeats until no unvisited vertex can be reached from any of the visited vertices.

Graph G and Its Adjacency Lists

DFS(0)=0 1374526

HeadNodes

Analysis of DFS

- If G is represented by its adjacency lists, the DFS time complexity is $O(e)$.
- If G is represented by its adjacency matrix, then the time complexity to complete DFS is $O\left(n^{2}\right)$.

Breath-First Search

- Starting from a vertex v, visit all unvisited vertices adjacent to vertex v.
- Unvisited vertices adjacent to these newly visited vertices are then visited, and so on.
- If an adjacency matrix is used, the BFS complexity is $O\left(n^{2}\right)$.
- If adjacency lists are used, the time complexity of BFS is $\mathrm{d} 1+\mathrm{d} 2+\ldots+\mathrm{dn}=\mathrm{O}(e)$.

Graph G and Its Adjacency

Lists

BFS(0)=0 1234567

HeadNodes

Application

- Graph is used to construct a network which is used to find shortest path from source to destination, source to all vertices \& to construct MST.
- PERT
- CPM

Scope of Research

- Operation Research

Assignment

Q.1)What is a graph?
Q.2)What is difference between path and cycle?
Q.3)What is difference between DFS \& BFS traversal of a graph?

